p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42⋊4Q8, C23.213C24, C22.512+ 1+4, C22.352- 1+4, C4⋊Q8⋊31C4, C4.20(C4×Q8), C42.182(C2×C4), C42⋊4C4.15C2, C42⋊8C4.21C2, C22.35(C22×Q8), C22.104(C23×C4), (C2×C42).420C22, (C22×C4).478C23, (C22×Q8).88C22, C2.18(C22.11C24), C23.63C23.4C2, C2.C42.49C22, C23.65C23.31C2, C23.67C23.26C2, C2.5(C23.41C23), C2.7(C22.36C24), C2.10(C23.32C23), C2.13(C2×C4×Q8), (C4×C4⋊C4).36C2, (C2×C4⋊Q8).25C2, C4⋊C4.106(C2×C4), (C2×C4).163(C2×Q8), (C2×C4).33(C22×C4), (C2×Q8).110(C2×C4), C22.98(C2×C4○D4), (C2×C4).652(C4○D4), (C2×C4⋊C4).183C22, SmallGroup(128,1063)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊4Q8
G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 364 in 230 conjugacy classes, 148 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C4⋊Q8, C22×Q8, C42⋊4C4, C4×C4⋊C4, C42⋊8C4, C23.63C23, C23.65C23, C23.67C23, C2×C4⋊Q8, C42⋊4Q8
Quotients: C1, C2, C4, C22, C2×C4, Q8, C23, C22×C4, C2×Q8, C4○D4, C24, C4×Q8, C23×C4, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C4×Q8, C22.11C24, C23.32C23, C22.36C24, C23.41C23, C42⋊4Q8
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 27 23 55)(2 28 24 56)(3 25 21 53)(4 26 22 54)(5 41 37 9)(6 42 38 10)(7 43 39 11)(8 44 40 12)(13 49 45 17)(14 50 46 18)(15 51 47 19)(16 52 48 20)(29 61 57 69)(30 62 58 70)(31 63 59 71)(32 64 60 72)(33 121 125 89)(34 122 126 90)(35 123 127 91)(36 124 128 92)(65 102 78 74)(66 103 79 75)(67 104 80 76)(68 101 77 73)(81 93 113 117)(82 94 114 118)(83 95 115 119)(84 96 116 120)(85 98 105 109)(86 99 106 110)(87 100 107 111)(88 97 108 112)
(1 45 37 59)(2 14 38 32)(3 47 39 57)(4 16 40 30)(5 31 23 13)(6 60 24 46)(7 29 21 15)(8 58 22 48)(9 71 27 17)(10 64 28 50)(11 69 25 19)(12 62 26 52)(18 42 72 56)(20 44 70 54)(33 75 111 117)(34 104 112 94)(35 73 109 119)(36 102 110 96)(41 63 55 49)(43 61 53 51)(65 106 84 92)(66 87 81 121)(67 108 82 90)(68 85 83 123)(74 99 120 128)(76 97 118 126)(77 105 115 91)(78 86 116 124)(79 107 113 89)(80 88 114 122)(93 125 103 100)(95 127 101 98)
(1 80 37 114)(2 68 38 83)(3 78 39 116)(4 66 40 81)(5 82 23 67)(6 115 24 77)(7 84 21 65)(8 113 22 79)(9 94 27 104)(10 119 28 73)(11 96 25 102)(12 117 26 75)(13 90 31 108)(14 123 32 85)(15 92 29 106)(16 121 30 87)(17 34 71 112)(18 127 72 98)(19 36 69 110)(20 125 70 100)(33 62 111 52)(35 64 109 50)(41 118 55 76)(42 95 56 101)(43 120 53 74)(44 93 54 103)(45 122 59 88)(46 91 60 105)(47 124 57 86)(48 89 58 107)(49 126 63 97)(51 128 61 99)
G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,27,23,55)(2,28,24,56)(3,25,21,53)(4,26,22,54)(5,41,37,9)(6,42,38,10)(7,43,39,11)(8,44,40,12)(13,49,45,17)(14,50,46,18)(15,51,47,19)(16,52,48,20)(29,61,57,69)(30,62,58,70)(31,63,59,71)(32,64,60,72)(33,121,125,89)(34,122,126,90)(35,123,127,91)(36,124,128,92)(65,102,78,74)(66,103,79,75)(67,104,80,76)(68,101,77,73)(81,93,113,117)(82,94,114,118)(83,95,115,119)(84,96,116,120)(85,98,105,109)(86,99,106,110)(87,100,107,111)(88,97,108,112), (1,45,37,59)(2,14,38,32)(3,47,39,57)(4,16,40,30)(5,31,23,13)(6,60,24,46)(7,29,21,15)(8,58,22,48)(9,71,27,17)(10,64,28,50)(11,69,25,19)(12,62,26,52)(18,42,72,56)(20,44,70,54)(33,75,111,117)(34,104,112,94)(35,73,109,119)(36,102,110,96)(41,63,55,49)(43,61,53,51)(65,106,84,92)(66,87,81,121)(67,108,82,90)(68,85,83,123)(74,99,120,128)(76,97,118,126)(77,105,115,91)(78,86,116,124)(79,107,113,89)(80,88,114,122)(93,125,103,100)(95,127,101,98), (1,80,37,114)(2,68,38,83)(3,78,39,116)(4,66,40,81)(5,82,23,67)(6,115,24,77)(7,84,21,65)(8,113,22,79)(9,94,27,104)(10,119,28,73)(11,96,25,102)(12,117,26,75)(13,90,31,108)(14,123,32,85)(15,92,29,106)(16,121,30,87)(17,34,71,112)(18,127,72,98)(19,36,69,110)(20,125,70,100)(33,62,111,52)(35,64,109,50)(41,118,55,76)(42,95,56,101)(43,120,53,74)(44,93,54,103)(45,122,59,88)(46,91,60,105)(47,124,57,86)(48,89,58,107)(49,126,63,97)(51,128,61,99)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,27,23,55)(2,28,24,56)(3,25,21,53)(4,26,22,54)(5,41,37,9)(6,42,38,10)(7,43,39,11)(8,44,40,12)(13,49,45,17)(14,50,46,18)(15,51,47,19)(16,52,48,20)(29,61,57,69)(30,62,58,70)(31,63,59,71)(32,64,60,72)(33,121,125,89)(34,122,126,90)(35,123,127,91)(36,124,128,92)(65,102,78,74)(66,103,79,75)(67,104,80,76)(68,101,77,73)(81,93,113,117)(82,94,114,118)(83,95,115,119)(84,96,116,120)(85,98,105,109)(86,99,106,110)(87,100,107,111)(88,97,108,112), (1,45,37,59)(2,14,38,32)(3,47,39,57)(4,16,40,30)(5,31,23,13)(6,60,24,46)(7,29,21,15)(8,58,22,48)(9,71,27,17)(10,64,28,50)(11,69,25,19)(12,62,26,52)(18,42,72,56)(20,44,70,54)(33,75,111,117)(34,104,112,94)(35,73,109,119)(36,102,110,96)(41,63,55,49)(43,61,53,51)(65,106,84,92)(66,87,81,121)(67,108,82,90)(68,85,83,123)(74,99,120,128)(76,97,118,126)(77,105,115,91)(78,86,116,124)(79,107,113,89)(80,88,114,122)(93,125,103,100)(95,127,101,98), (1,80,37,114)(2,68,38,83)(3,78,39,116)(4,66,40,81)(5,82,23,67)(6,115,24,77)(7,84,21,65)(8,113,22,79)(9,94,27,104)(10,119,28,73)(11,96,25,102)(12,117,26,75)(13,90,31,108)(14,123,32,85)(15,92,29,106)(16,121,30,87)(17,34,71,112)(18,127,72,98)(19,36,69,110)(20,125,70,100)(33,62,111,52)(35,64,109,50)(41,118,55,76)(42,95,56,101)(43,120,53,74)(44,93,54,103)(45,122,59,88)(46,91,60,105)(47,124,57,86)(48,89,58,107)(49,126,63,97)(51,128,61,99) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,27,23,55),(2,28,24,56),(3,25,21,53),(4,26,22,54),(5,41,37,9),(6,42,38,10),(7,43,39,11),(8,44,40,12),(13,49,45,17),(14,50,46,18),(15,51,47,19),(16,52,48,20),(29,61,57,69),(30,62,58,70),(31,63,59,71),(32,64,60,72),(33,121,125,89),(34,122,126,90),(35,123,127,91),(36,124,128,92),(65,102,78,74),(66,103,79,75),(67,104,80,76),(68,101,77,73),(81,93,113,117),(82,94,114,118),(83,95,115,119),(84,96,116,120),(85,98,105,109),(86,99,106,110),(87,100,107,111),(88,97,108,112)], [(1,45,37,59),(2,14,38,32),(3,47,39,57),(4,16,40,30),(5,31,23,13),(6,60,24,46),(7,29,21,15),(8,58,22,48),(9,71,27,17),(10,64,28,50),(11,69,25,19),(12,62,26,52),(18,42,72,56),(20,44,70,54),(33,75,111,117),(34,104,112,94),(35,73,109,119),(36,102,110,96),(41,63,55,49),(43,61,53,51),(65,106,84,92),(66,87,81,121),(67,108,82,90),(68,85,83,123),(74,99,120,128),(76,97,118,126),(77,105,115,91),(78,86,116,124),(79,107,113,89),(80,88,114,122),(93,125,103,100),(95,127,101,98)], [(1,80,37,114),(2,68,38,83),(3,78,39,116),(4,66,40,81),(5,82,23,67),(6,115,24,77),(7,84,21,65),(8,113,22,79),(9,94,27,104),(10,119,28,73),(11,96,25,102),(12,117,26,75),(13,90,31,108),(14,123,32,85),(15,92,29,106),(16,121,30,87),(17,34,71,112),(18,127,72,98),(19,36,69,110),(20,125,70,100),(33,62,111,52),(35,64,109,50),(41,118,55,76),(42,95,56,101),(43,120,53,74),(44,93,54,103),(45,122,59,88),(46,91,60,105),(47,124,57,86),(48,89,58,107),(49,126,63,97),(51,128,61,99)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4L | 4M | ··· | 4AJ |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | Q8 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C42⋊4Q8 | C42⋊4C4 | C4×C4⋊C4 | C42⋊8C4 | C23.63C23 | C23.65C23 | C23.67C23 | C2×C4⋊Q8 | C4⋊Q8 | C42 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 1 | 4 | 2 | 4 | 1 | 16 | 4 | 4 | 2 | 2 |
Matrix representation of C42⋊4Q8 ►in GL8(𝔽5)
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 2 | 4 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 | 2 | 0 |
0 | 0 | 0 | 0 | 2 | 4 | 2 | 3 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 3 | 2 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 4 | 2 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 2 | 4 |
0 | 0 | 0 | 0 | 4 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 2 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 4 | 2 | 3 | 1 |
G:=sub<GL(8,GF(5))| [2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,4,0,0,0,0,0,4,4,0,0,0,0,0,0,2,1,0,0,0,0,0,1,3,3,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,4,2,0,0,0,0,1,0,3,4,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,3],[4,2,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,3,0,1,0,0,0,0,1,2,0,4,0,0,0,0,0,0,0,2],[3,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,3,4,2,4,0,0,0,0,0,0,1,2,0,0,0,0,2,3,1,3,0,0,0,0,4,3,2,1] >;
C42⋊4Q8 in GAP, Magma, Sage, TeX
C_4^2\rtimes_4Q_8
% in TeX
G:=Group("C4^2:4Q8");
// GroupNames label
G:=SmallGroup(128,1063);
// by ID
G=gap.SmallGroup(128,1063);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,680,758,219,268,675,80]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations